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Nucleosynthesis Sites

• Massive stars (M>10Msun) and SNe II

• Synthesis of the nuclear species from O to Zn

• Heavy elements: r-process, p-process, νp-process

• Red giants (AGB stars)

• Carbon

• S-process elements

• SNe Ia

• ½ to 2/3 of iron peak nuclei not produced by SNe II

• Novae

• May be significant source of 13C, 15N, and 17O in galactic matter

• May be source of presolair grains



Stellar Lifetimes and Metal-Poor Stars

Neutron 
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Black 
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Solar System Abundances

Goal: understanding the solar chemical composition



A “complete” pattern

Scaled solar 
system r-
process

Mello et al (2013)



Comparison to theoretical models

Mello et al (2013)



Heavy elements in r-rich stars
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Observational Trends

• Heavy n-capture elements

• Seems robust (and understood)
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Light n-capture elements

Frebel et al 
(2005)

François et al (2007)

Travaglio et al (2007)

Scaled solar system r-process



Observational Trends

• Heavy n-capture elements

• Seems robust (and understood)

• Light n-capture elements

• Confusing situation



Sr and Ba in metal-poor stars
F

ig
u

re
: 

S
. 

B
is

te
rz

o
D

a
ta

: 
S

A
G

A
 (

S
u

d
a

e
t 

a
l 
2

0
0

8
) No known metal-poor 

star without neutron-

capture elements?

large scatter in Sr/Ba at low 

metallicities

� evidence for a independent 

process producing Sr but

not Ba at low metallicities.
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Sr, Y, Zr
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� Non-correlation of Sr, Y, 
Zr, Pd and Ag in metal-poor 
halo stars with Eu nor Ba
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Observational Trends

• Heavy n-capture elements

• Seems robust (and understood)

• Light n-capture elements

• Confusing situation Interesting situation

• Large scatter• Large scatter

• Various processes proposed: LEPP, νp-process, weak 

r-process, ???



Trends with Metallicity
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Trends with Metallicity

Core-collapse supernovae
Type Ia SNe

Sneden et al (2008)
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Fe-peak elements

McWilliam 1997



Fe-group nucleosynthesis

• Explosive Si-burning

• All reactions in 

equilibirum

� Y=Y(Yn, Yp, ρ, T)

• Max temp

� amount of unburned � amount of unburned 

material (Si)

• Max density

� amount of Fe versus

free p and α

[X/Fe] = log
10

[(X/Fe)/(X/Fe)
sol

]

Neutrino-interactions matter; the electron fraction Ye matters



Supernova Nucleosynthesis

• Oxygen and alpha-elements (Ne, Mg, Ca)

• (γ,α) reactions on O and Ne

• Silicon, sulfur, calcium

• Explosive oxygen burning through 16O + 16O

• Fe-group elements (Ti to Zn, mainly 56Ni)

• Explosive nucleosynthesis through (α,γ)

• Heavy elements (r-process??)

• Weak s-process (core He-burning)

• “Lighter heavy elements” (νp-process)

• p-nuclei (γ-process)

• 11B, 19F, 138La, 180Ta (ν-process)

• (ν,ν’) and (νe,e
-) reactions



Core-Collapse Supernovae

• Main sequence mass: > 8-10Msun

H-burning He-burning C-burning Ne-burning O-burning Si-burning

107 years 106 years 103 years 3 years 0.8 years 1 week

Credit: Thielemann



Core-Collapse Supernovae

3D, SASI, acoustic modes, MHD, 
rotation, collective neutrino flavor 
oscillations, magic, ???

Core bounce
(max compression)

explosion



Simulations of Core-Collapse SNe

• No explosions in spherical symmetry (*)

• Many ongoing efforts in multi-D

BaselOak Ridge Garching

⇒ Computationally expensive

⇒ But we still want to study supernova nucleosynthesis

⇒ Artificial explosions

Princeton

(*) except for ONeMg cores



SN models for nucleosynthesis

In spherical symmetry need to artificially trigger 

the explosion:

1. Thermal bomb / piston: initiate explosion by 

increasing temperature or placing a piston in 

the star

• Limitations:• Limitations:

misses physics of collapse,

bounce, and onset of 

explosion

25



SN models for nucleosynthesis

Infall Shock

Wind

Shock ejection

Neutrinos
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Supernova Nucleosynthesis

Infall Shock

Wind

Shock ejection

Neutrinos

What happens during 
collapse and bounce?
Electron fraction?
How has this material 
changed before it gets 
shocked?

Location of the mass cut?
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Effect of neutrinos?



Effect of neutrinos

• Supernova dynamics

• Deposit energy to revive stalled shock

• � neutrinos can be used to trigger a more realistic 

induced explosion

• Neutron-to-proton ratio (electron fraction)• Neutron-to-proton ratio (electron fraction)

• Neutron-rich (r-process)

• Proton-rich (νp-process)

• � neutrino energies and luminosities are important

• Neutrino-induced nucleosynthesis (νp-process; 

ν-process)



SN models for nucleosynthesis

2. Absorption: Mimics the effects of multi-D 

simulations in 1D

• Convection in the heating region � more efficient 

energy deposition

• Increased neutrino absorption and emission rates (in 

the heating region) by a constant factor

• Limitations: large factors change the system beyond 

energy deposition



Effect of neutrinos

• Supernova dynamics

• Deposit energy to revive stalled shock

• � neutrinos can be used to trigger a more realistic 

induced explosion

• Neutron-to-proton ratio (electron fraction)• Neutron-to-proton ratio (electron fraction)

• Neutron-rich (r-process??)

• Proton-rich (νp-process)

• � neutrino energies and luminosities are important

• Neutrino-induced nucleosynthesis (νp-process; 

ν-process)



Conditions in ν-driven winds

• Weak interactions set electron fraction Ye

• R-process: high neutron-to-seed ratio

(Yn/Yseed ~100)

• Short expansion timescale (inhibits formation of seed • Short expansion timescale (inhibits formation of seed 

nuclei)

• High entropy (photons dissociate seed nuclei into 

nucleons)

• Electron fraction Ye<0.5

• BUT: These conditions are not realized in 

recent simulations

s/kB ~ 50-120; τ ~ few ms; Ye ~ 0.4 – 0.6



Neutron-to-proton ratio

Ye>0.5 is generic result of simulations with elaborate ν-transport

32 32

• If the neutrino flux is sufficient (scales 1/r2):

• High density / low temperature � high EF for electrons � e-captures 

dominate � n-rich

• If electron degeneracy lifted for high T � νe-captures dominate � due to n-

p mass difference, p-rich composition

Buras et al (2006)Rampp & Janka (2000)Liebendörfer et al (2001)
Frohlich et al (2006)



Effect of neutrinos

• Supernova dynamics

• Deposit energy to revive stalled shock

• � neutrinos can be used to trigger a more realistic 

induced explosion

• Neutron-to-proton ratio (electron fraction)• Neutron-to-proton ratio (electron fraction)

• Neutron-rich (r-process??)

• Proton-rich (νp-process)

• � neutrino energies and luminosities are important

• Neutrino-induced nucleosynthesis (νp-process; 

ν-process)



The νp-Process

• proton-rich matter is ejected 

under the influence of neutrino 

interactions

• true rp-process is limited by 

slow β decays, e.g. τ(64Ge)

• Neutron source: F
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• With neutrinos
o Without neutrinos

• Antineutrinos help bridging long 

waiting points via (n,p) 

reactions:
64Ge (p,g)

(n,p)

64Ge (n,p) 64Ga
64Ga (p,γ) 65Ge

(n,p)

(p,g)



The νp-Process

64Ge

56Ni



Nucleosynthesis

Melton & Frohlich



Wind termination shock

• Interaction of the neutrino-driven wind and the 

slow ejecta � wind termination shock

• Deceleration and re-heating of material 

Long-term hydordynamical simulations:
2D: ~2ms – 3s p.b.
1D: ~2ms – 10s p.b.

Arcones et al 2007



Wind termination shock

• Effects of wind termination

• T9>3 GK: matter stays in NiCu cycle

• T9=2GK: heavier elements produced

• T9<1GK: expansion too fast for neutrinos to produce 

enough neutrons 

38Arcones, Frohlich, Martinez (2012)



Critical (and not so critical) reactions
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Electron fraction of the ejecta

• How does the abundance pattern from ν-driven 

wind simulations compare to the observed 

pattern in metal-poor stars.
Arcones & Montes (2011)

Observed pattern reproduced
Production of p-nuclei

Overproduction of A=90 (N=50)
� Only a fraction of neutron-rich 
ejecta (Hoffman et al 1996)



Neutrino Oscillations

8.8Msun model from Munich group:



Neutrino Oscillations

• Supernova model: 8.8Msun

• Rates for neutrino captures

• Includes collective neutrino effects

• Nucleosynthesis calculations Seadrow & Frohlich

Duan & Friedland

Huedepohl et al (2010)



Neutrino Oscillations

Trajectory 1Trajectory 5Trajectory 10Trajectory 14Trajectory 20



Neutrino Oscillations

Trajectory 1

Trajectory 1

T ~ 1GK



Summary & Conclusions

• Neutrinos are important for supernova dynamic 

and supernova nucleosynthesis

• Details set electron fraction and hence 

conditions for nucleosynthesis

• Observations indicate the need for an 

additional process (LEPP).additional process (LEPP).

• The νp-process is a candidate for the LEPP.

• The νp-process nucleosynthesis depends on the 

detailed hydrodynamic conditions, nuclear 

physics, and neutrino physics.



Evidence for non-solar r-processes?

Roederer et al. 2010
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